Acoustic wave propagation

Zahra Kavehvash

Possible configurations of mechanical wave propagation

Possible propagation configurations

Longtudinal vs. Transverse waves

Planar vs. Circular waves

Planar Wave

Huygens' Principle

Constructive and Destructive interferences

"constructive interference"

2D

Reflection and Transmission of waves

Reflection of planar and spherical waves

Planar Wave Reflection

Spherical Wave Reflection

Reflector

Diffraction

 $\lambda/w = 0.6$

Standing Waves

Mechanical 1D waves

Mechanical 1D waves

- Stems from a perturbation induced to the medium
- Refer to as a wave: U = U(x, y, z, t)
 - Pendulum angle relative to its equilibrium state
 - The metal ball velocity
 - The ball energy
- In 1D case: U = U(x, t)

The wave function

• Propagation along positive x direction:

• Propagation along negative x direction:

$$U(x,t) = U(x+ct)$$

The wave equation

$$U'' = \frac{\partial^2 u}{\partial x^2} = \frac{1}{c^2} \cdot \frac{\partial^2 u}{\partial t^2}$$

The wave equation

• For 3D case:

$$U = U(\hat{n} \cdot \overline{r} - ct)$$

 $u = Ae^{j[\omega t - kx]} = A[\cos(\omega t - kx)) + j\sin(\omega t - kx))]$

• More generally for 3D:

$$u = A e^{j\left[\omega \cdot t - \overline{k} \cdot \overline{R}\right]}$$
$$\omega = 2\pi f = \frac{2\pi}{T}$$
$$\overline{k} \triangleq k \cdot \hat{n}$$

• Group waves:

 $U_1 = A\cos(k_1x - \omega_1 t)$

 $U_2 = A\cos(k_2 x - \omega_2 t)$

• Group waves:

• Wave velocity:

$$c = \frac{\Delta x}{\Delta t}$$

- Group velocity: $c_g = \frac{\partial \omega(k)}{\partial k}$
- Phase velocity: $c_p = \frac{\omega(k)}{k}$
- If the speed of sound varies with the wave frequency, these are not the same.

- Standing waves:
 - $U_1 = A\cos(kx \omega t)$
 - $U_2 = A\cos(kx + \omega t)$

 $U = U_1 + U_2$

 $U = U_1 + U_2 = \underbrace{2A\cos(kx)}_{X(x)} \cdot \underbrace{\cos(\omega t)}_{\Theta(t)}$

• More generally: $U = X(x) \cdot \Theta(t)$

Standing Waves

Wave in a 1D medium

- Transverse waves in a string:
- Tension (T/Newton)
- Density (P kg/m3)
- Wave function: y(x,t)

Wave in a 1D medium

• Newtons' second law: $\Sigma F_y = m \frac{\partial^2 y}{\partial t^2}$

Wave in a 1D medium

$$\frac{\frac{\partial y}{\partial x}\Big|_{x+\Delta x} - \frac{\partial y}{\partial x}\Big|_{x}}{\frac{dx}{\frac{\partial^{2} y}{\partial x^{2}}}} = \frac{\rho}{T} \cdot \frac{\partial^{2} y}{\partial t^{2}}$$

$$\frac{\partial^2 y}{\partial x^2} = \frac{\rho}{T} \cdot \frac{\partial^2 y}{\partial t^2}$$

• The familiar wave Equation, thus:

$$1/C^2 = \rho/T$$

$$c = \sqrt{\frac{T}{\rho}}/T$$

- $y_1(x,t) = U_1 + U_2$ and $y_2(x,t) = U_3$
- Displacement continuity: $y_1|_{x=0} = y_2|_{x=0}$
- Equality of forces along y: $T \cdot \frac{\partial y_1}{\partial x}\Big|_{x=0} = T \cdot \frac{\partial y_2}{\partial x}\Big|_{x=0}$

• Boundary conditions:

Thus final reflection coeff.:

$$\frac{A_2}{A_1} = \frac{C_2 - C_1}{C_2 + C_1} = \frac{\sqrt{\rho_1} - \sqrt{\rho_2}}{\sqrt{\rho_1} + \sqrt{\rho_2}}$$

• Similarly the transmission coefficient could be obtained:

$$\frac{B}{A_1} = \frac{2c_2}{c_1 + c_2}$$

$$\frac{B}{A_1} = \frac{2\sqrt{\rho_1}}{\sqrt{\rho_1} + \sqrt{\rho_2}}$$

 Special case #1: a point connecting 2 similar strings (p₁ = p₂ = p.)

$$\frac{A_2}{A_1} = \frac{\sqrt{\rho} - \sqrt{\rho}}{\sqrt{\rho} + \sqrt{\rho}} = 0$$

There is no echo!

$$\frac{B}{A_1} = \frac{2\sqrt{\rho}}{\sqrt{\rho} + \sqrt{\rho}} = 1$$

The transmitted wave is equal to the incident wave!

Special case #2: a point is connected to a wall (a fixed end, p₂→∞)

• Special case #3: The string has free end ($\rho_2 = 0$)

 Special case #4: The second string is denser than the first one (ρ₁ < ρ₂):

 $A_2/A_1 < 0$

• The transmitted wave is smaller than the impinging wave:

 $B < A_1$

- Special case #4: The second
- string is denser than the first
- one $(\rho_1 < \rho_2)$:

 Special case #5: The first string is denser than the second one (P1>P2):

 $A_2/A_1 > 0$

• The transmitted wave will be bigger than the impinging wave:

 $B > A_1$

- Special case #5: The first string
- is denser than the second one

 $\rho_1 > \rho_2$

Wave energy in string

- Kinetic energy (related to velocity) + Potential energy (stemming from the string tension)
- For the impinging wave:

 $\frac{dU_1}{dt} \equiv \dot{U}_1 = j\omega \cdot U_1 \qquad \qquad E_I = \frac{1}{2}\rho_1 \cdot A_1^2 \cdot \omega^2$ $\dot{U}_{1\,\text{max}}^2 = \dot{U}_1 \cdot \dot{U}_1^* = \omega^2 \cdot A_1^2 \qquad \qquad E_R = \frac{1}{2}\rho_1 \cdot A_2^2 \cdot \omega^2$ $E_T = \frac{1}{2}\rho_2 \cdot B^2 \cdot \omega^2$

Wave energy in string

 Energy flowing into the point of discontinuity in time equals the energy flowing out of it:

$$E_I \cdot C_1 = E_R \cdot C_1 + E_T \cdot C_2$$

- Or $\frac{1}{2}\rho_1 c_1 \cdot (A_1^2 \omega^2) = \frac{1}{2}\rho_1 c_1 \cdot (A_2^2 \omega^2) + \frac{1}{2}\rho_2 c_2 \cdot (B^2 \omega^2)$
- Which yields $Z \triangleq \rho \cdot C$.): $Z_1 A_1^2 = Z_1 A_2^2 + Z_2 B^2$

Wave energy in string

• Recalling the refl. And trans. ratios:

 $\frac{A_2}{A_1} = \frac{c_2 - c_1}{c_2 + c_1}$ $\frac{B}{A_1} = \frac{2c_2}{c_1 + c_2}$

• Which yields:

 $\frac{\text{Reflected energy}}{\text{Impinging energy}} = \frac{(Z_1 - Z_2)^2}{(Z_1 + Z_2)^2}$ $\frac{\text{Through-transmitted energy}}{\text{Impinging energy}} = \frac{4Z_1Z_2}{(Z_1 + Z_2)^2}$

• The strair ε :

$$\varepsilon = \frac{L' - L}{L} = \frac{\Delta L}{L}$$

 Hook's law (E: Young's modulus or modulus of elasticity)

$$\varepsilon = \frac{\tau}{E}$$

•
$$\tau = E \cdot \varepsilon$$

$$F_{\text{left}} = A \tau_x = A \cdot E \cdot \varepsilon = A \cdot E \cdot \frac{\partial \eta}{\partial x} \Big|_x$$

$$F_{\text{right}} = A \cdot E \cdot \frac{\partial \eta}{\partial x} \Big|_{x+dx}$$

$$\Delta F = F_{\text{right}} - F_{\text{left}} = \frac{\partial^2 \eta}{\partial t^2}$$

•
$$\Rightarrow AE \cdot \left(\frac{\partial \eta}{\partial X}\Big|_{x+dx} - \frac{\partial \eta}{\partial X}\Big|_{x}\right) = \underbrace{\rho \cdot A \cdot dx}_{m} \cdot \ddot{\eta} \cdot \frac{1}{A \, dx}$$

 $\Rightarrow E \cdot \left(\frac{\frac{\partial \eta}{\partial X}\Big|_{x+dx}}{dx} - \frac{\partial \eta}{\partial X}\Big|_{x}}{dx}\right) = \rho \cdot \ddot{\eta}$

•
$$E \cdot \frac{\partial^2 \eta}{\partial x^2} = \rho \cdot \ddot{\eta}$$

: Wave equation for the rod

• Wave equation for the rode:

$$\frac{\partial^2 \eta}{\partial x^2} = \frac{1}{\frac{E}{E}} \cdot \ddot{\eta} \Rightarrow \frac{1}{C^2} = \frac{\rho}{E}$$

$$\rho$$
and
$$C = \sqrt{\frac{E}{\rho}}$$